metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1-{2-[2-(2-Ammonioethylamino)ethylamino]ethyliminomethyl}-2-naphtholato- $\kappa^4 O, N, N', N''$)chloridocopper(II) chloride

Ruiting Xue and Meiju Niu*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: niumeiju@163.com

Received 17 November 2007; accepted 28 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.099; data-to-parameter ratio = 14.7.

In the square-pyramidal title complex, $[CuCl(C_{17}H_{24}N_4O)]Cl$, the Cu^{II} atom is coordinated by three N atoms [Cu-N1.946 (2), 2.010 (2), 2.085 (3) Å], one O atom [Cu-O1.910 (2) Å] and one apical Cl atom [Cu-Cl 2.6437 (9) Å]. The three coordinated N and one O atom are almost coplanar, with a maximum deviation of 0.0268 Å. The tetradentate ligand forms two five-membered (N-Cu-N) and one sixmembered (N-Cu-O) chelate rings with bite angles of 84.06 (10), 85.30 (10) and 91.70 (9)°, respectively. The two N-Cu-N chelate rings are non-planar.

Related literature

For the general role of Schiff bases, see: Gamovski *et al.* (1993). For the crystal structures of related complexes, see: Nanda *et al.* (2006).

Experimental

Crystal data [CuCl(C₁₇H₂₄N₄O)]Cl $M_r = 434.84$

b = 13.0277 (18) A	
c = 12.7118 (18) Å	
$\beta = 111.365 \ (2)^{\circ}$	
V = 1892.1 (5) Å ³	
Z = 4	

Data collection

Bruker SMART CCD area-detector	9597 measured reflections
diffractometer	3320 independent reflections
Absorption correction: multi-scan	2646 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.027$
$T_{\min} = 0.543, T_{\max} = 0.616$	
(expected range = 0.515 - 0.585)	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.034 & 226 \text{ parameters} \\ wR(F^2) = 0.099 & H\text{-atom parameters constrained} \\ S = 1.00 & \Delta\rho_{\max} = 0.59 \text{ e} \text{ Å}^{-3} \\ 3320 \text{ reflections} & \Delta\rho_{\min} = -0.40 \text{ e} \text{ Å}^{-3} \end{array}$

Mo $K\alpha$ radiation $\mu = 1.45 \text{ mm}^{-1}$

 $0.48 \times 0.40 \times 0.37$ mm

T = 298 (2) K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots Cl2^{i}$	0.91	2.44	3.225 (3)	144
N3−H3···Cl1 ⁱⁱ	0.91	2.50	3.388 (3)	165
N4−H4A…Cl1 ⁱⁱⁱ	0.89	2.31	3.204 (3)	177
$N4 - H4B \cdot \cdot \cdot Cl2^{ii}$	0.89	2.25	3.079 (4)	156
$N4-H4C\cdotsO1$	0.89	1.83	2.703 (4)	167
Symmetry codes: $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}.$	(i) - <i>x</i> +	1, -y, -z+1;	(ii) $x, -y +$	$\frac{1}{2}, z + \frac{1}{2};$ (iii)

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LN2007).

References

Gamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.

Nanda, P. K., Bera, M., Aromi, G. & Ray, D. (2006). *Polyhedron*, **25**, 2791–2799.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.

Acta Cryst. (2008). E64, m118 [doi:10.1107/S1600536807064033]

(1-{2-[2-(2-Ammonioethylamino)ethylamino]ethyliminomethyl}-2-naphtholato- $\kappa^4 O, N, N', N''$)chloridocopper(II) chloride

R. Xue and M. Niu

Comment

Schiff base complexes play an important role in coordination chemistry (Gamovski *et al.*, 1993). In a continuation of a study of Schiff base ligands and their copper(II) complexes, we report here the title complex (Fig. 1), in which the ligand donor atoms consist of three nitrogen atoms (one imine and two amine) and one phenolic oxygen atom. Another Cu^{II} complex containing the same tetradentate ligand has been reported by Nanda *et al.* (2006). In the crystal structure of (I), intermolecular N—H···Cl hydrogen bonds involving all amine and the ammonium groups link the molecules into two-dimensional networks, which lie parallel to the (100) plane (Table 1, Fig. 2). The ammonium group also forms an intramolecular hydrogen bond with the phenolic O atom.

Experimental

A solution of triethylenetetramine(1 mmol) in hot methanol (10 ml) was added dropwise to a methanol solution (5 ml) of 2-hydroxy-1-naphthaldehyde (2 mmol, 344.3 mg). The mixture was then stirred at 323 K for 2 h. An aqueous solution (2 ml) of cupric chloride dihydrate (1 mmol, 170.8 mg) was then added dropwise and the mixture stirred for another 5 h. The solution was held at room temperature for about one week, whereupon green prism-shaped crystals suitable for X-ray diffraction analysis were obtained (m.p. > 573 K).

Refinement

All H atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.97 Å (methylene) or 0.93 Å (aromatic, methenyl), N—H = 0.91 Å (imine) or 0.89 Å (ammonium) and with with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. Crystal packing of the title complex showing the hydrogen bonding interactions as dashed lines.

 $(1-\{2-[2-(2-Ammonioethylamino)ethylamino]ethyliminomethyl\}-2-naphtholato-\ \kappa^4O, N, N', N'') chloridocopper (II) chloride$

Crystal data	
[CuCl(C ₁₇ H ₂₄ N ₄ O)]Cl	$F_{000} = 900$
$M_r = 434.84$	$D_{\rm x} = 1.526 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 12.2687 (17) Å	Cell parameters from 3813 reflections
<i>b</i> = 13.0277 (18) Å	$\theta = 2.5 - 26.7^{\circ}$
<i>c</i> = 12.7118 (18) Å	$\mu = 1.45 \text{ mm}^{-1}$
$\beta = 111.365 \ (2)^{\circ}$	T = 298 (2) K
V = 1892.1 (5) Å ³	Block, green
Z = 4	$0.48\times0.40\times0.37~mm$

Data collection

Bruker CCD area-detector diffractometer	3320 independent reflections
Radiation source: fine-focus sealed tube	2646 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
phi and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -14 \rightarrow 14$
$T_{\min} = 0.543, T_{\max} = 0.616$	$k = -15 \rightarrow 12$
9597 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_0^2) + (0.0538P)^2 + 1.3872P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.001$

3320 reflections

226 parameters

 $\Delta \rho_{\text{max}} = 0.59 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.40 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.70712 (3)	0.22917 (3)	0.92710 (3)	0.03282 (14)
C11	0.59641 (8)	0.15391 (7)	0.72264 (7)	0.0511 (2)
Cl2	0.26659 (9)	0.14202 (8)	0.07523 (10)	0.0662 (3)
N1	0.8689 (2)	0.22822 (18)	0.9363 (2)	0.0327 (6)
N2	0.7491 (2)	0.09353 (18)	1.0070 (2)	0.0342 (6)
H2	0.7261	0.0426	0.9545	0.041*
N3	0.5626 (2)	0.22573 (19)	0.9765 (2)	0.0377 (6)
H3	0.5809	0.2667	1.0385	0.045*
N4	0.4596 (3)	0.4130 (2)	0.8025 (3)	0.0599 (8)
H4A	0.4462	0.4803	0.7985	0.090*
H4B	0.4206	0.3844	0.7358	0.090*
H4C	0.5359	0.4017	0.8212	0.090*
01	0.69138 (17)	0.37176 (15)	0.88974 (19)	0.0406 (5)
C1	0.9272 (3)	0.3033 (2)	0.9185 (2)	0.0328 (7)
H1	1.0057	0.2918	0.9308	0.039*
C2	0.8815 (2)	0.4046 (2)	0.8810 (2)	0.0304 (6)
C3	0.7695 (3)	0.4344 (2)	0.8753 (2)	0.0328 (7)
C4	0.7349 (3)	0.5390 (2)	0.8524 (3)	0.0400 (7)
H4	0.6622	0.5597	0.8519	0.048*
C5	0.8061 (3)	0.6090 (2)	0.8313 (3)	0.0418 (8)
Н5	0.7816	0.6769	0.8181	0.050*
C6	0.9163 (3)	0.5815 (2)	0.8290 (3)	0.0372 (7)
C7	0.9567 (3)	0.4795 (2)	0.8561 (2)	0.0332 (7)
C8	1.0697 (3)	0.4563 (2)	0.8560 (3)	0.0438 (8)
H8	1.0987	0.3900	0.8728	0.053*
C9	1.1367 (3)	0.5298 (3)	0.8319 (3)	0.0502 (9)
Н9	1.2108	0.5127	0.8333	0.060*
C10	1.0955 (3)	0.6301 (3)	0.8050 (3)	0.0499 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10	1.1418	0.6794	0.7887	0.060*
C11	0.9881 (3)	0.6547 (3)	0.8030 (3)	0.0471 (8)
H11	0.9605	0.7213	0.7842	0.057*
C12	0.9279 (3)	0.1298 (2)	0.9797 (3)	0.0411 (8)
H12A	1.0116	0.1403	1.0163	0.049*
H12B	0.9145	0.0815	0.9182	0.049*
C13	0.8775 (3)	0.0893 (2)	1.0628 (3)	0.0395 (7)
H13A	0.9029	0.0192	1.0836	0.047*
H13B	0.9029	0.1310	1.1307	0.047*
C14	0.6823 (3)	0.0837 (3)	1.0821 (3)	0.0460 (8)
H14A	0.7172	0.1258	1.1490	0.055*
H14B	0.6820	0.0129	1.1055	0.055*
C15	0.5603 (3)	0.1189 (2)	1.0168 (3)	0.0470 (8)
H15A	0.5244	0.0738	0.9527	0.056*
H15B	0.5140	0.1163	1.0644	0.056*
C16	0.4418 (3)	0.2538 (3)	0.9023 (4)	0.0547 (10)
H16A	0.3873	0.2243	0.9333	0.066*
H16B	0.4255	0.2236	0.8284	0.066*
C17	0.4203 (4)	0.3678 (3)	0.8885 (4)	0.0680 (12)
H17A	0.3373	0.3808	0.8678	0.082*
H17B	0.4609	0.4012	0.9604	0.082*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0285 (2)	0.0288 (2)	0.0378 (2)	0.00173 (14)	0.00819 (16)	0.00456 (15)
Cl1	0.0517 (5)	0.0531 (5)	0.0416 (5)	-0.0067 (4)	0.0088 (4)	-0.0052 (4)
Cl2	0.0524 (6)	0.0529 (6)	0.0853 (7)	0.0006 (4)	0.0156 (5)	-0.0208 (5)
N1	0.0287 (13)	0.0297 (13)	0.0362 (14)	0.0036 (10)	0.0075 (11)	0.0021 (11)
N2	0.0332 (14)	0.0299 (13)	0.0334 (14)	-0.0002 (10)	0.0048 (11)	0.0015 (11)
N3	0.0373 (14)	0.0330 (14)	0.0456 (16)	-0.0008 (11)	0.0183 (12)	0.0041 (11)
N4	0.0419 (17)	0.0528 (19)	0.077 (2)	0.0075 (14)	0.0127 (16)	0.0175 (17)
01	0.0283 (11)	0.0320 (12)	0.0581 (14)	0.0030 (9)	0.0117 (10)	0.0069 (10)
C1	0.0287 (15)	0.0347 (16)	0.0330 (16)	0.0019 (12)	0.0087 (13)	-0.0028 (13)
C2	0.0323 (15)	0.0295 (15)	0.0249 (15)	-0.0011 (12)	0.0050 (12)	-0.0033 (12)
C3	0.0349 (16)	0.0288 (15)	0.0304 (16)	-0.0018 (13)	0.0066 (13)	-0.0024 (12)
C4	0.0362 (17)	0.0326 (17)	0.047 (2)	0.0045 (13)	0.0108 (15)	0.0005 (14)
C5	0.048 (2)	0.0275 (16)	0.0448 (19)	0.0033 (14)	0.0114 (16)	0.0015 (14)
C6	0.0415 (18)	0.0325 (16)	0.0332 (17)	-0.0052 (13)	0.0083 (14)	-0.0007 (13)
C7	0.0345 (16)	0.0344 (16)	0.0258 (15)	-0.0035 (13)	0.0051 (13)	-0.0055 (12)
C8	0.0436 (19)	0.0414 (19)	0.047 (2)	-0.0032 (15)	0.0172 (16)	0.0012 (15)
C9	0.042 (2)	0.057 (2)	0.054 (2)	-0.0056 (16)	0.0204 (17)	0.0024 (17)
C10	0.053 (2)	0.051 (2)	0.047 (2)	-0.0159 (17)	0.0193 (18)	0.0033 (16)
C11	0.058 (2)	0.0377 (18)	0.0417 (19)	-0.0077 (16)	0.0135 (17)	0.0023 (15)
C12	0.0310 (17)	0.0336 (17)	0.054 (2)	0.0074 (13)	0.0098 (15)	0.0043 (14)
C13	0.0352 (17)	0.0320 (17)	0.0422 (18)	0.0044 (13)	0.0032 (14)	0.0063 (13)
C14	0.048 (2)	0.0414 (19)	0.049 (2)	0.0008 (15)	0.0181 (17)	0.0124 (16)
C15	0.047 (2)	0.0382 (18)	0.060 (2)	-0.0022 (15)	0.0240 (18)	0.0106 (16)

C16	0.0349 (19)	0.059 (2)	0.070 (3)	0.0065 (16)	0.0185 (18)	0.0179 (19)
C17	0.061 (3)	0.067 (3)	0.083 (3)	0.026 (2)	0.035 (2)	0.021 (2)
Geometric parai	neters (Å, °)					
Cu1—O1		1.910 (2)	С5—	-H5	0.93	300
Cu1—N1		1.946 (2)	С6—	-C7	1.41	5 (4)
Cu1—N2		2.010 (2)	С6—	-C11	1.41	7 (4)
Cu1—N3		2.085 (3)	С7—	-C8	1.42	20 (4)
Cu1—Cl1		2.6437 (9)	C8—	-C9	1.36	57 (5)
N1—C1		1.280 (4)	C8—	-H8	0.93	300
N1-C12		1.477 (4)	С9—	-C10	1.39	98 (5)
N2-C14		1.472 (4)	С9—	-H9	0.93	300
N2-C13		1.475 (4)	C10-	C11	1.34	47 (5)
N2—H2		0.9100	C10-	-H10	0.93	300
N3—C16		1.484 (4)	C11-	-H11	0.93	300
N3—C15		1.487 (4)	C12-	C13	1.50	02 (5)
N3—H3		0.9100	C12-	-H12A	0.97	700
N4—C17		1.470 (5)	C12-	-H12B	0.97	700
N4—H4A		0.8900	C13-	-H13A	0.97	700
N4—H4B		0.8900	C13-	-H13B	0.97	700
N4—H4C		0.8900	C14-	C15	1.49	95 (5)
O1—C3		1.321 (3)	C14-	-H14A	0.97	700
C1—C2		1.445 (4)	C14-	—H14B	0.97	700
C1—H1		0.9300	C15-	-H15A	0.97	700
C2—C3		1.404 (4)	C15-	-H15B	0.97	700
С2—С7		1.455 (4)	C16-	C17	1.50	07 (5)
C3—C4		1.426 (4)	C16-	-H16A	0.97	700
C4—C5		1.355 (4)	C16-	-H16B	0.97	700
C4—H4		0.9300	C17-	-H17A	0.97	700
C5—C6		1.410 (4)	C17-	—H17B	0.97	700
O1—Cu1—N1		91.70 (9)	С6—	-C7—C2	119	.3 (3)
O1—Cu1—N2		164.83 (10)	C8—	-C7—C2	123	.6 (3)
N1—Cu1—N2		84.06 (10)	С9—	-C8—C7	121	.2 (3)
O1—Cu1—N3		94.34 (9)	С9—	-C8—H8	119	.4
N1—Cu1—N3		160.46 (11)	С7—	-C8—H8	119	.4
N2—Cu1—N3		85.30 (10)	C8—	-C9—C10	121	.0 (3)
O1—Cu1—Cl1		98.46 (7)	C8—	-С9—Н9	119	.5
N1—Cu1—Cl1		101.77 (8)	C10-	—С9—Н9	119	.5
N2—Cu1—Cl1		96.66 (7)	C11-	—С10—С9	119	.5 (3)
N3—Cu1—Cl1		95.70 (8)	C11-		120	.3
C1—N1—C12		120.0 (3)	С9—	-C10—H10	120	.3
C1—N1—Cu1		127.5 (2)	C10-	C11C6	121	.4 (3)
C12—N1—Cu1		112.23 (19)	C10-		119	.3
C14—N2—C13		115.7 (2)	С6—	-C11—H11	119	.3
C14—N2—Cu1		107.68 (18)	N1—	-C12—C13	107	.3 (2)
C13—N2—Cu1		107.95 (18)	N1—	-C12—H12A	110	.3
C14—N2—H2		108.4	C13-		110	.3
C13—N2—H2		108.4	N1—	-C12—H12B	110	.3

Cu1—N2—H2	108.4	C13—C12—H12B	110.3
C16—N3—C15	108.0 (2)	H12A—C12—H12B	108.5
C16—N3—Cu1	124.5 (2)	N2-C13-C12	106.9 (2)
C15—N3—Cu1	104.42 (18)	N2-C13-H13A	110.4
C16—N3—H3	106.3	C12—C13—H13A	110.4
C15—N3—H3	106.3	N2-C13-H13B	110.4
Cu1—N3—H3	106.3	C12—C13—H13B	110.4
C17—N4—H4A	109.5	H13A—C13—H13B	108.6
C17—N4—H4B	109.5	N2-C14-C15	107.1 (3)
H4A—N4—H4B	109.5	N2	110.3
C17—N4—H4C	109.5	C15—C14—H14A	110.3
H4A—N4—H4C	109.5	N2	110.3
H4B—N4—H4C	109.5	C15—C14—H14B	110.3
C3—O1—Cu1	128.49 (18)	H14A—C14—H14B	108.6
N1—C1—C2	125.5 (3)	N3-C15-C14	109.7 (3)
N1-C1-H1	117.2	N3—C15—H15A	109.7
C2—C1—H1	117.2	C14—C15—H15A	109.7
C3—C2—C1	121.6 (3)	N3—C15—H15B	109.7
C3—C2—C7	119.3 (3)	C14—C15—H15B	109.7
C1—C2—C7	118.9 (3)	H15A—C15—H15B	108.2
O1—C3—C2	124.6 (3)	N3-C16-C17	114.1 (3)
O1—C3—C4	116.2 (3)	N3—C16—H16A	108.7
C2—C3—C4	119.2 (3)	C17—C16—H16A	108.7
C5—C4—C3	121.2 (3)	N3—C16—H16B	108.7
С5—С4—Н4	119.4	C17—C16—H16B	108.7
C3—C4—H4	119.4	H16A—C16—H16B	107.6
C4—C5—C6	121.7 (3)	N4—C17—C16	113.0 (3)
С4—С5—Н5	119.1	N4—C17—H17A	109.0
С6—С5—Н5	119.1	C16—C17—H17A	109.0
C5—C6—C7	119.1 (3)	N4—C17—H17B	109.0
C5—C6—C11	121.1 (3)	C16—C17—H17B	109.0
C7—C6—C11	119.8 (3)	H17A—C17—H17B	107.8
C6—C7—C8	117.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$	
N2—H2···Cl2 ⁱ	0.91	2.44	3.225 (3)	144	
N3—H3···Cl1 ⁱⁱ	0.91	2.50	3.388 (3)	165	
N4—H4A…Cl1 ⁱⁱⁱ	0.89	2.31	3.204 (3)	177	
N4—H4B…Cl2 ⁱⁱ	0.89	2.25	3.079 (4)	156	
N4—H4C···O1	0.89	1.83	2.703 (4)	167	
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (ii) x , $-y+1/2$, $z+1/2$; (iii) $-x+1$, $y+1/2$, $-z+3/2$.					

Fig. 1

Fig. 2